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An imnortant problem aszociated with any :_dssior, involving a space-
Z

craft or airc_aft is that of correcting path errors in such r_manner that

prescribed terminal conditions which define successful completion of the mis-

sion are satisfied. Dete_minatlon of these corrections is referred to as

guidance. Many vehicles must be controlled by automatic or semi-automatic

devices which operate without the dlrect intervention of a man. For non-

_: tracked vehicles, these devices must control the path and speed of the vehicle.

It is this type of vehicle (spacecraft or aircraft) which will be considered.

There are several definite steps in the solution of the guidance problem.

First, a nominal trajectory must be defined. Next, the errors in a current

state can be evaluated by comparison to the nominal trajectory. Using infor- 'r

marion from the nominal trajectory plus the known state errors, guidance in-

4

for_nation can be generated to drive the terminal state toward the desired end

• conditions. _

[
This study compares two variations of the minimum distance guidance

t

:: algorithm (open and closed loop forms) with a nonlinear reoptimization scheme

.... ;l which is the ideal guidance procedure. This study s_eks to determine the ef-

_ :',," fects of loop closure on the perfommance of the guidance algorithm. For the

_-_'_'_.<'[,i_ • numerical simulation, a minimum time low-th,_dst Earth-Mars transfer is used

--: _._,._. as an example problem.
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ABSTRACT

A comparison is made of open and closed loop applications of a

second order guidance algorithm, using the minimum distance strategy. A non-

linear reoptimization procedure is used as the ideal guidance history. The

system model used for the comparison is a low-thrust vehicle performing a

minimum time, three-dimensiona], heliocentric Earth-Mars transfer.

For the example problem considered, closed loop guidance proves to

be much more accurate on satisfaction of the final state than the open loop

procedure. On the other hand, closed loop guidance proves to be much more

vulnerable to perturbation by highly nonlinear regions in the trajectory.

Finally, the results indicate that for this problem the best loop closure in-

terval is at each integration step, about one day, or mo_e often, if possible.

i
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[.1,;(t,ll) ] rj/z, r, ubr_,_trix r,[ [¢(t,11) ] [ = 1,2,3,4

VECTORS:

All vectors are column vectors unless otherwise noted. The vector

size is indicated in the statement immediately following the symbol.

f n-vector of state variable derivatives

2n-vector of state variable and Euler-Lagrange variable derivatives

! h (n+l)-vector of terminal constraint relations

_ M q-vector of specified terminal constraint relations
!

: U m-vector of control variables

• x n-vector of state variables
(-

2n-vector of state variables and Euler-Lagrange variables

n-vector of time dependent Lagrange multipliers

"!}ii_!i__t':._'_ _ q-vector of constant LaEmange multipliersi! _ (n-q+l)-vector of terminal constz_ints

SCALARS:

c p_opellent exhaust speed melatlve to vehlcle

H variational Ha_ltoniam

I awdlial, y functlomal to.be extl_m/sed

J p_foz_ncs lnd_

K t_-_t.al _n_nt obtslned _ _latlomL% anal.ys£s

m :l.mmtamtamMoummms of wmdbd,_.l_

mo _ia_ mm,,,oe _,nur..to

r

._. i
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' I' ,Juxiliary fum,tronaJ oq,,t] to '_ + _T _1

_' r irv;t,Jntaneou._;r'adial di;;tance of vehicle from origin of heliocentric

:' coordinate systemt:

t independent variable, time

: T thrust of the ion engine

" B constant mass ejection rate

u gravitational constant for the Sun

¢ performance index

i SUPERSCRIPTS :

) diffementiation with respect to time,r
4

( )T .mtrix transpose

( )-1 matrix inverse _f

( )1 indicates evaluation on the reference trajectoz./

• SUBSCRIPTS :

.,;.b: _ ( )o evaluation at _he initial time

:. :.. "" :"" ( )f evaluation at the tez_ainal tJ_e

( )1 evaluation at some tim whil_, the mJ.ssJ.oD is in pr_ss

( )M _'

( )E F,at_h

MJ _wq_mm.le.__mlz

_u£mm-dlz_mce _te_mce
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I. INTRODUCTION

I.I. Preliminary Description

As man extends his horizons to include exploration of the solar sys-

tem, large mission durations are encountered which would present some prob-

lems for a manned spacecraft. A logical step would be to shorten these mis-

sion durations (transfer times) with the use of some additional thrust during

the transfer. The most likely candidate for this additional thrust is a low-

thrust, continuous operation engine. This might be aun ion or plasma-type

engine. The force produced by this thrust requires the development of a

method to control the direction of thrust so that the ter_ninal conditions of

the mission will be satisfied. This type of mission would be characterized by

four phases; a) ascent and escape phase, b) midcoumse phase, c) approach _

phase and d) terminal maneuver phase.
%

The midcoumse phase is a heliocentric transfer with the spacecraft*

,': engine thrusting continuously at some low level. PoP The class of %TaJector-

, . _: ies that does not contain coast pez,lods, it is deslrable To minimize The• . ,'%1 ,

• ; : %Tans em time. This will allow a minimum amount of fuel To be carmled Through

The ascent and escape phase. The constant magnitude thrust can be conTmolled

in dImecZlon so That The %Tansfer time _s a minimum. The purpose of this

study Is not to look at diffex'enT trajectories ])uT to compaz_ the pez_oz_Nmce

of two iuidance algori%;_ on the same t_e_-tGt_y. A _L], m£nlmum Time

trmmfer tra_eczox.y and tim ueocL4rt.d oont'z,ol can be liras'Bred and stood

begoxw the (:xlpsx*£1mu _ Istlm1:ed. 1'b_ namJ1_.%tme_eGt(1_ mm _eaez,eted by
[

Hart (1) _ 18 oo_m_ JJ, _'r.ail 1_aee. !

i
1.;!. _,oblm Statemnt ._,
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set of control chan_,es necessary to get the spacecraft b_ _o the nominal

path after an off-course or off-nomlnal condition is r,, :,gnized. Hart (I)

and others indicate that rather than trying to get back on the nom'nal path,

one should find a new optimum path to satisfy the mission an_ conditions.

In the absence of an onboamd computer capable of carrying out a total trajec-

tory reoptlmization, one might use a guidance routine. There are several al-

# gorithms under considera*,ion for this type of problem. All of these methods

are derived from the Calculus of Variations. A general comparison of several
&

' algorithms which might be used for a reoptlmizatlon approach was made by
i
l

, LewalJen (5). The guidance algorithm considered in this study was presented

by Hart (1), along with several others for comparison. In Hart' s study, the

_. minimum distance guidance algorithm was fomld to be the best among those he

oonslder_d. To the author's knowledge, all of the prevlous work done with _

• i the minimum distance guidance algoPlth= has been eazTled out employing the

I
I algorithm in an open loop forl. This study applle8 the mlnlau= distance
!

guidance techn,_que in both open and closed loop foz_s and ocmpar_8 these re-

sults. The basis fcw cosp_wison is the result of the nonlinesr r_eopt/mizJ.-

tion pz_cedu_e used by Hsz_ (1). The state hiataey puez_tod by the u_nimm

distmoe 8J_o_lthn 8rid that generated by the nonZlno_ z_pt_nstion pro- ,_

_edu_e _-e e_npaz_d to _ to detel_Lne the pel_ot_sn_ of the e.,._od lOOl)
t

ve_8.8the openloop_pll_tl_n.

Seventl problem e_mtel_d in the app:LS_tt:_ou of the method m

d_8_._.t. Theompm_Lsoeo_ the openmd _toeedloopanalyse8_onsJ_8of : ,
t

• lomm lX_ m mupm_ l_m ttd_ _, omeoptSm__tue f_ _i_J_

t_ loopolomm lm4Odom _e dmmdaod. _8 8 mmedm_me_, _ _e o_eed
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loop ,]naly_is proven to be better, then ,_ome optimum value for the loop clo-

sur- period will be _ought.



?. MAT[IEMAT ICAL MOD}:L

The nominal trajectory employed in this study is a minimum time,

low-thrust heliocentric transfer from Earth to Mars. The equations of motion

describing the trajec .L.y are expressed in terms of a heliocentric rectangu-

lar coordinate system, x_ , x5 , x6 . The x_ axis coincides with the

line of the ascending node of Mars, the x5 axis lies in the ecliptic plane

and the x6 axis coincides with the angular momentum vector of the Earth

, with respect to the Sun. For simplicity, the spacecraft is given the velo-

• city of the Earth at _he beginning of _,mission rather than escape velocity
!
t

1 relative to the Earth. Gravitational effects of the Earth are then neglected.

Details of the arrival at Mars will be dete1_nined by specific mission require-

ments. For the problem under consldematlon, the end conditions are taken to _

be the position and velocity of a point on the oz_bit of Mars at the final

time. 0

m

Gravitational effects of MaPs, along with perturbing effects of +.he

"'_: othez,planets, have been neglected although these fomces would have to be in- -_

•. ,_ cluded in an actual alsslon analysis. These forces aPs neglected so that the

.... _ effects of the guidance method can be studAed without coeplAcstlons due to
!

I'-, _ the effects of snail re--Turin8 foz, ce8 :In the system.,,,%""-^_

%
1%e orbit of Ma_s Is aasumN/ to be an eLLtl_e with an eccentricity

_f • = .093393 , a seml-maJo_ axis of a • 1.523691 AU (Astmonoaical

Units) , ld m sails of la_l/mation of I • .0::_2_J _d/ans . The ml;u- L ',

meat o_ pen,ihelJ.ou is _nkeu to be _.9_2927 mad/ares , taxi i'm, the _te

rotes employed, the emlpmsmt of the _ node is 0.0 . This so_._._ is

the sam _ that .se_ by l_.1_ (_),_ (_) _! e_w,.

_4,'+. . :'_. . ""_._.. _ : ',,._._.d?_._.._._..4,_,.: ._ , _. -_" , ..... _$_7 _._-:<_ _'_' _ _° _ .....
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3. GUTDANCE ALGORITHM

3.1. Second Order Guidance Procedures

The minimum distance guidance algorithm and the perturbation func-

tions guidance algorithm are both based on the second variation of the Cal-

culus of Variations. Both procedures calculate the same guidance information°

The difference between the two procedures is the point at which the infor-

mation is applied on the trajectory. Hart (I) gives a more detailed treat-

ment of several second order algorithms.

The differential equations describing the system to be controlled

are

I
x = _(x,u,t) (3.1.1)

where

x is an n-vector of state variables,

q

is an m-vector of control variables,

t is the scalar independent variable, time, and

is an n-vector of known functions.

Assume that a nominal "trajectory has been obtained which minimizes a pemfor- •

matte index _ ,.
l '

i '

d = _(i(tf),tf) (3.1.2)

and satisfies the retinal o_ms_aints ,..+ •
+'i ,_ ¢

Z 0 (3.1.3).(.(tf),tf) ",t .: "
t%

wheme , ,...e.ala, quln,_ty .valua,edat th. tlz.nLinal,,and _ i.. I_ +i

l'b:[J1:Z_jeCtOl#y mUSt O_t::J.8_7 _a'T_t_ d:J.ffe_ont:[al equst$on8; Zhese 8z,o _'_:_-_".+"_ _

+ •, +:: +" , + _,. _ ._/' .. :++,_.....

" '" ._t_k_- ,' _ ' "'
'i_" ..,o.,.,. _ , ",' "'" '+ "

.. .".:... _. "..:.::_:." , :::_:i.._+"_:_,!.,"'::_'_.',._Z. _"':";,- ..... " " "_."._"-" "::', .....':" ' .::'!*: ' . + :_ ;'_:":'.t.'.,'. , . -: ...../..,.t_.',_ '..:-_+,,-'.z.":.."+'_._5" "" _:_:.... ' .._.++J• . , - . , _ • , +, ,-, . , . , ..
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x = f(x,u,t) (3.1.4)

= -H T (3.1.5)
X

H- = 0 (3.1.6)
U

t < tf where _ is an n-vector of multipliers, and H = _T_
For

to _ _
< I

Formulation and solution of this problem is based on a Calculus of Variations

approach. Since x(t ) and t are known, Equations (3.1.4) through (3.1.6)
0 0

and subject to the following boundary conditions:

At t
0

X(to) = x ° (3.1.7)



i

dMf = {[_lx]_x + [Mx]fdt + Mtdt}tf = 0 (3.1.15)

: A total variatSon of M(x(tf),tf) rather than a partial variation must be

• considered since the final time, tf , as well as x(tf) is allowed to change.

._ Thus,

2"
T T Td;}t f

6xf = {[Pxx]6X + ([Pxx]? + (Ptx) + H )dt + [_lx] (3.1.16)

{6_T} + (H_ + Ptx)6X + (Ht + Ptxf + Ptt)dt + d_TMf}tf = 0 (3.1.17)

where P : ¢ + _T_ .
This set of Equations, (3.1.11) through (3.1.17), must be satisfied over the

entire trajectory, for to_<ti_< tf .

Now, assuming that [H_] is nonsingular, Equation (3.1.13) can be i_

solved for 6u to give
q

6u = -[H_I-I{[H_16x + [H_x]6i} . (3.1.10)

Using this result, Lu can be eliminated frc_ Equations (3.1.11) and (3.1.12).

This will yield a set of 2n first order linear differential equations, with

time dependent coefficients in 6x and 6A . For simplicity, let this sys-
!:

tem of 2n equations be written as i

whe_Po ,.
L

[A,¢t)l - [_il- IH_IIH_]']'[_] .
i-

[A_I',:)I --[_ili[._gl-*P%Xl . _'.,..._,,_...,--

•_ ;,7 .-..-. ,. .. "'" ":" " ""' :'_'"'..... ::" "'" '_"' ;'' .,,._,:}:_-,_'" _:_ ._9_'/'"_ '_ _: • "_- : !.' ; :,*.:,_.'._--t'""." ._:.;,".'.._jC. .' <.,_._._; ._"_,._L.__-':,.;;._"':. '_"i.;. ,: *:_.,._ i
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[/',,:._()J -- -[lixx ] + [lixu][tluu]-Z[,tux ] , ,__n,J

t'

[A4(t) 1 -- -[Hx_l �[Hxul[Huul-l[Hu_l

Numerical integration of Equation (3.1.19) with proper boundary con-

ditions will now determine _x and _ These results can be used in Equa-

'.
tion (3.1.18) to evaluate the control variation history, 6u(t) . The bound-

1;

'[ _ ary conditions can be obtained from Equations (3.1.15) through (3 1.17) The

:i_!.. _i n+q+l equations contain the 2n+q+l unknowns 6xf , 6_f , A_ and Atf

If the n+q+l equations are linearly independent, then there are n indepen-
f

! dent quantities among the unknowns. Therefore, if n of the unknowns are

chosen arbitrarily and independent of one another, the 2n+q+l unknowns are

unique determined. Choose the q components of A_ and n-q of the compo-

nents of dxf as the arbitrarily chosen unknowns. By specifying each of _

these values, all 2n+:l components of 6xf , g_f and Atf can be determined.

This now allows backward integration of Equation (3.1.19) from tf to tI .

•= The value of tI mag be any arbitrary value in the interval to -< tl -< tf . .

, The n arbitrarily chosen unknowns and the q components of AMf are ,

all specified quantities at tf . Combining these vectors will give an n+q , I

, vector of specified quantltles. Equation (3.1.19) is now integrated n+q , :times with n+q llneamly Independent s%a_Ing conditions. The n+q vectors , i
of solutions fop 6x(t) and 6A(t) fomm a (2nxn+q) %Tansitlon ma%TiX.

After some manlpula%ion _he deslred 8olutlon foz, 6x(t) and 6A(t) is oh- i " "

talned. %

= ,..},...T,...._o...i,.l

%6X(t) I ,,

• ,'._._,.v • ,_ ,'% ',;, ":" "".... ,,, _..' ..'.."',-., "_. ,"_. ', .. '." _., ,',,.: k': , ,., " ,. ,_,o,_; ..... ..;%. . - ......'" ; '_,.,.'_.a_" _. 'r.. ..._._, .,, . ,. : ,.'-.".-:':'._;.":%._:....',':,.,,,;.,." "O....k,¢,,...-'.'.:;;,.'" " :,_,:. "_g.,-_N_ _ ". _o_,-_._.' _ ' -'_.,_;' o_ _"_' '_'
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10

where [xl(t,tf) ] is an n'n matrix,

[x2(t,tf) ] is an n*q matrix,

[x3(t,tf)] is an n×n matrix,

[x4(t,tf)] is an nxq matrix,

0 is a qxn null matrix, and
qxn

I is a qxq identity matrix.
qxq

When Equation (3.1.20) is substituted into Equation (3.1.18), the control var-

iation, 6u(t) , in terms of the state error, 6x(t 1) , and terminal constraint

, error, AMf is obtained. Making thfs substitution and rewriting gives the

following guidance equation



11

J

1. Solve the n+q*± Equations (3.1.15) through (3.1.17) n+q

times. From the solutions of these equations, n+q initial

conditions are obtained for the integration of Equation
(3.1.19).

2. Now integrate Equation (3.1.19) n+q times from tf to

: tI Store the integrated values at each step.

3. The gain matrices, [Al(t) ] and [A2(t) ] can now be eval-

uated. Substitute these results into Equation (3.1.21) to

, g_ve the control variation history, _u(t)

This presents a general algorithm for generating second order guid-

" ance information. The perturbation functions approach and the minimum dis-

tance Drocedure differ only _n the way this guidance information is applied.

i 3.2. Variations in the Procedures

_ The state variations for the perturbation functions guidance al-

gorithm and the minimum distanee algorithm are determined in the same manner,

For the control variation, however, the calculation is the same, but the guid-

ance information is applied in a slightly different way.

In the minimum distance guidance algorithm, an index t%me is used

for calculating the gain matrices which minimizes a metric function of the I

difference between the cuzTent perturbed states and the states on the nomi-

nal trajectory. In other words, the index time is taken to be the time of

the closest point on the nominal trajectory. The pertumbation functions

guidance algorithm uses the time based on the time of the perturbation on

the nominal path for calculation of the gain matrices. This pmocedure was !
i

_II_nally proposed by Powems (2) and is covemed In deta_l in Ha_ (I). The I.

cca_wcti._u to the time fop calculation of the ge/n matTlces is given as • .:

1973003103-020



i i-x. (x i - )

At : 6Y 1c c I (3.2.22)

C C

i

<
where

*'_ ( )c indicates evaluation at the current time andq

i ( )* indicates evaluation on the nominal path.
This calculation is based on the position only, as indicated by the summation

from four to six. A value of At is calculated at each point along the nom-
• inal path beyond tI The index time whick is used for calculating the

gain matrices, is now determined by t + At . The nominal state variables
c

4
at this index time are used to calculate the gain matrices. In order to make

an evaluation of the performance of the algorithm, the guidance information

obtained from the technique is added to the nominal control program. The

nonlinear equations of motion are then integrated, using this augmented con-

trol history as the control program. This integration gives the state his-

tory.

3.3. Closed Loop Application of the Algorithm I I

The previous section covers only open loop control, using the min- t •

iimumdistanceguidanceprocedume. A closedloopmodificationof this algo-

rithm is now considered. The procedure remains basically the same as far

as solution of the neq ¨�Equations(3.1.15) through (3.1.17) and the back-

ward Intesmatlon of Equation (3.1.19) from tf to tI . The gain matrices, .

[Al(t) ] and [A2(t) ] , are now ewLluated. Th_ allows calculation of the

comtTol va_lat:t_ h{_to_y and the state vsP:Lation history. The guidance _'-
-, . W" "

devis¢i_.- :_edi_ted at t I are now added to the nosi_8_ guidance h_t_. _.<Lj.

=

1973003103-021



tl-- CURRENT TIME

t2-- INDEX TIME
(MIN. DIST. ALGO.)

. 1"3- INDEX TIME
(PERT. FUNC. ALGO.)

T-- TIME TO GO

t _tf_ +Atf
, T

, _

_ q

} T i1 .
;

to 1
I '

1.

b

FI CURE 2.

TIME PARAMETERS ASSOCIATED WITH _ . .

MINIMUM DISTANCE GUIDANCE, _,,

! OPEN LOOP. :_'"_;._._ :t
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:ll4;ment_d },told.m(,, [nformat[nn. A{ lh[. _, t,o[l,t, r,,t)J,,r tl_.,r_ ,,l[owfn,,, l.h,, ,;uid-

,race information to be used throughout tile re:;t of l}_,: mi:;r;ion, on,_ cdn erie-

ate a closed inop system to update the guidance. The guidance loop is closed

at periodic intervals by evaluating the state errors at this time. The gain

matrices are then re-evaluated. A new control variation history is calcu-

lated, along with a new state deviation history. The new augmented control

"; history is formed, and the nonlinear equations of motion are once again in-

tegrated. The advantage of this closed loop method is that it continually

updates the control variation history as the mission proceeds. The computa-

tional procedure for the minimum distance algorithm, open and closed loop

can be summarized as follows:

I. Solve the n+q+l Equations (3.1.15) through (3.1.17), n+q

rimes. From the solutions of these equations, n+q initial

conditions are obtained for the integration of Equations
(3.1.19).

,t

2. Now integrate Equation (3.1.19) n+q times from tf to tI .
t

Store the integrated values at each step.
J

_!':i 3. Evaluate the gain matrices, [AI(t)] and [A2(t) ] , using •

, "_ the states fez" the closest point on the nominal trajectory. .

?J,i

q. Substitute [AI(T)] and [^2(t)] into Equation (3.1.21) to •

give the control varlatlon history, 6u(t) .

5. Evaluate the state variation hlsto_, 6_(t) fro_ Equation

(3.1.20).

6. Form the auKmen_ed control history and lntega'ate the nonlinear

equatton8 of notion using the new conl:rol, ,.

7. a. If the control 18 to be open loop, the a/go_lthm is fin-
/shed. /

b. If the ccml:l_l 18 to be closed loop, :[nteiWate to the !_...
else of the next loop closume, evaluate the 8tale dev:Lal:lons _, "

and go back to Step 3. i : , :.!,

%=
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FI GURE 3.

TIME PARAMETERS ASSOCIATED WITH

MINIMUM DISTANCE GUIDANCE,
COMPARINO OPEN AND CLOSED LOOP.

(SEE FIGURE E FOR DEFINITION OF t's)
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3.q. rJum,,r[('41 irrlp[om, mt_J_ [or,

Tho _q_'n and c.lo_.d loop forum'; of tt_. minimum (];_;tanc_, _, l_d4nce

algorithm were compared. The p_rformance of _ach method was referenced to

the ideal guidance history produced by the nonlinear guidance scheme. The

results of this procedure are considered to be the new nominal or /deal guid-

ance histor 7 considering the known state errors. By integration of the non-

.1 linear equations of motion, position and velocity histories are obtained.

The Euclidean norms of the differences in the position and velocity compo-

_ nents were computed at each point along the three trajectories generated by

{
! these methods. The deviations in velocity and position between th__.minimum

distance techniques and the ideal guidance were then plotted as a function

of time. The open loop form of the minimum distance technique was found to

perfor_ as indicated by Hart (1). However, it is of interest to discuss some

of the problems encountered with the implementation of the closed loop contz_l

, algorithm. One problem area was the period at about 100 days into the mis-

:: _ sion when it is necessary to turn the spacecraft around for the deceleration '

"J for Mirs rendezvous The perturbed control causes the time of the tur_-aroundp • ; •

"- v

to shift slightly. This time shift, due to the rapid turn-around causes pre- dr

j_ dictlons of large con1_rol changes, as can be seen in Figure _. These large

...._,4 control chanse8 exceed llnearlt3t and cause the alEorlthm to break down. To %

avoid this p_:_blen, nouinal contr,ol is used dtwJ.ng the tur,n-ewound _rloa. i
!.

The second problen are8 occurs when _he spacecraft Is nearing the _ •

f_nal _£m. At this poln_ £n the _Jec_ory, _he effect of a control chanse _"_ _
[

/8 881811. The 81_o_ll:hm then pl_dicte 8 LIn_e ¢ontTol change zo cause tl_ k;,_

necessm_ results. This rej_ £8 sensed by the _ncro_J_ n_nitude of the _-_i _,-

chmp8. When clevLn:Lanszah • .15 dlau,



I

' * OMINAL (IDEAL) GUIDANCE

i
d'u .
_t

I

I

A

t

FIOURE 4.
t

CONTROL DURINA TURNAROUND
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nominal control was used since ca]cuL_: ions of <ontrol could nc t b(, made

within the linear range. This limit of .15 radians was found by trying sev-

eral values. Beyond the time at which a .1_ radian control change was _ensed,

predicted control changes quickly approached a value of ab_u. 3 radians.

This limit is the same as that used by Hart (I).

3.5. Numerical Methods

!. Accuracy, time and storage requ3_ements fcr these methods are all

highly dependent on the numerical processes invo. ,ed. Matrix inversion and

numerical integration account for the majority of round-off and truncation

errors. The numerical integration routine used in this study is a fourth-

order Adams-Bahsforth predictor and a _ [fth-order Adams-MoufLon cor_ector.

A _ourth-order Runge-Kutta routine is used as a starter to obtain the inltial

: and three succeeding derivatives. The dependent variables are carried in

double precision dul_ing inte&,ration in an attempt to control round-off errors.

Matrix inversion is performed by Gaussian elimination. All numerical calcu-

lations were carried out on the CDC 5600/_00 digital computer in the i"JRTRAN
i

IV language. Storage r_qulzwments for zhe minimum d{stance algorithm is I

167,0008 words while the reopt:imizal:ion ( :Ideal guidance ) requires 60,0008

words. Computatlon time for the ndnlmum distance guidance was az,_und 12 sec-

t

onda. The z_optlLtzation (ideal luidance) requll'es about 15 seconds ,_f com-

putation t£_.
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_. l'l"',IJl,'l':, f)l' TIIfl [JIJMf,I.'I('A], _;IM[II,A'I' fin

Th_ f[_";_case conr_idered involved a :_tateerror of 5×I0-_'AU/Dav

in the xI velocity component. Posit_on deviation as a function of time is

shown in Figure 5, for open loop and closed loop control. The loop closure

periods are 30, 10, 5 and 1 day. A loop closure period of 30 days results

in a larger error at the final time than does the open loop guidance. Steady

improvement is shown, until at a loop closure period of _ day, the minimum[

error in the final posJtlon for the closed loop method is generated. For

simplicity, none of the plots in this study show complete results below a

time of 80 days. The reason fop doing this is that the loop closure period

has very little effect on velocity or position deviations from initiation
• h

. until this time is reached. A representative curve is shown in each case for _6

the general closed loop results, since all of these results look basically

the same.

! Figure 6 gives a summary of velocity deviations between the reop-

tlmized trajectory and the closed and open loop techniques. The initial state
J

error is again in the xI (velocity) component and loop closure periods of I

30, 10, 5 and I day ape considered. Once again, the 30-day loop closure

period is actually worse than the open loop control with gradual improvement

%
as the loop closure interval decreases. A loop closure period of I day gives

the least er_-or in the final velocity deviation.

Position deviations between open and closed loop control and the

i l

reoptimized for a position erTor of 5wi0"6 AU ape shown in Figume 7. This

e,n_l' occurs in the x_ component. The loop closume periods conside,,ed a_

I0, 5 and :t days. Results in this cue ax_ the same as fore p,,evlous cases In _. :-

thal: the 1:rend is tuw4wd inc_eased accuraoy with the mRller loop closure _:_ _ '_ _:.
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i,,,r' [o_1.

)'or' ,Jl] [_,r;t ca:;c:; invo.stig,llc, d_ tho r(_:;u]t'_ ,it',_, comparable. The

closed loop results show continued improvement over the open loop down To the

minimum loop closure period of I day. This limit of 1 day corresponds to

the length of one integration step.

Figures 9 and 10 show results for an erl,or introduced at 65 days

,}
into the mission. The closed loop results appear somewhat better than open

loop, with the errors _n positio,, corrected more accurately than those ip

velocity.

: Figure II gives a listing of the actual terminal errors for the

analyses shown in Figures 5 through 8. There is actually only a small dif-

ference between open and closed loop results at this point. F_gure 12 com- %

0
pares the computation time for open and closed loop analyses. There is very

} little diffe__ence between the two procedures. This, in effect, means that
i

' ]! the closed loop pl-ocedure is comparable to the open loop procedure as far as

"_'""i_! computer costs are concerned.

:I/

i:

%
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Differences Between Final StaYes cf

Reoptimized Trajectory and Minimum Distance Technique

Loop Closu_
• Error Period

Perturbation Position (AU) Velocity (AU/Day)

6x1(0) = 5.0×I0-6 AU 1.685_386101x10 -_ 1.3356785238xi0 -3 Open Loop

" 7.5959967022xi0 -5 7.55815778_5xI0 -3 1

" 7.5959967022xi0 -5 7.55815778_5xI0 -3 5

" 1.3712271024x10 -_ 1.116533582_x10 -4 10 _ _"

6X4(0) = 5.0x10 -6 AU/Day 1.6388290871x10 -_ 1.2626059427×10 -2 Open Loop

i 7.1368155158x10 -5 6.8088261_01x10 -3 1_,, 1.009391032_x10 -_ 8.7_1021006_x10 -3 5

Z"/1 1. 30375313_.2x10 -_ 1.0469032389x10 -2 10 t

1.6468665832x10 -_ 1.2_063156_x10 -2 30

Figux, e 11. ERRORS AT FINAL TIME FOR

ERROR INTRODUCED AT INITIATION OF THE MISSION.

%

""..,_"_:,_'_ :.;_?',._t,.,_',,.', ." ;'<,, ._,:: ' : ...... "_'_' • ,_'.,,_" : ' '. ':." - '._ ,:',:" "f'. "" ._...... . . ' ,,• . .":,_,.•_:_; ..... _,_ _.-,,%',.:. _ .-__.._... "_ , -,"_,_,_._ .,. _,_ ...... . ,¢ .., _,_...- ... , ....
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o

Velocity Perturbation in xI Component at

Initial Point of Trajectory:

Loop Closure Time
Period

(Days) (Sec.)
• t

Open loop 11.763

1 12.652

5 11.980

10 11.308

30 11.49o

• 6x1(0) : 5.0x10-6 AU/Day.

I )

Position Perturbation in x4 Component at

Initial Point of TPajectory:



I

5. CONCLUSIONS AND RECOMMENDATIONS

In this study, a comparison of open and closed loop applications of

the minimum distance guidance algorithm is presented. The comparison is based

on the differences between the results of these algorithms and the resultsi

generated by a nonlinear reoptimization algorithm. The trajectory used is

for a low-thrust spacecraft on a three-dimensional, heliocentric Earth-Mars

P transfer.

, 5.i. Summary of Conclusions

i The major conclusions resulting from this study are:

! I) The errors in the final state are somewhat smaller for the

closed loop procedure than for the open loop. However, the difference is not
%

large enough to indicate a choice of the closed loop proceduz_ over the open _

loop procedure. _ ,
{

2) The position erroms a1_e somewhat smallem for both procedumes

than are the velocity ezTors at the final time.

3) The errors in the final state seem to become _maller as the

loop closure interval becomes smaller. The results indicate that the choice I

of a contlnuous loop closure would decmeaee the erTors in the final state bu_

would increase cou_utatlon time.

_) Reopttslzatton appears to be the best method of guidance. Con- .
' 0

siderirqi the fact that the tezw/_al er_a_ _e still relatively l_e, the

closed loop i,.ocedure has only shall nea,lt above the open loop analys_u=. "+ " t

Since the eomputat£ou Zinas =me on the sane _der f_ the _"_nimm dietsnce

Kuidanee and the reopt_i2sat2on (i_oal8u_anee), little is gsLned by twl_ +•._

tlw **¢ond ordmPi_tdmo, mthod. Thl= result la the _ u that obta£md _!_ :_

r. ,. +, ,_. ) _',.%,..: '. . ...".... + *, ,_ .%_,_... ,," _.': ++,+++_++_;._ *
.,,+ .- .' . "_- • • ",-,..f, ,,+ ., . ._-_ p:-z,+ _ ._' _ ,, *'-+ ,:.+ ++ • _+ •. + + +_ .

,.. __.._.__.. +. ,*_:.._, : : ,f" .+ ..... ,,e . ,..-...+ +_ ++.' _ f: :+ + • + - + - _
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t,_' }t,lr't (]) [tl hi:; :;tud y.

5.2. Recommendations for Further Study

It is suggested that the study of low-thrust guidance techniques be

extended as follows:

1) The results of this study indicate that the nonlinear reoptimi-

zation technique is much more accurete with only a small difference in compu-

tation costs. Therefore, it is recommended that further effort be directed

at perfecting the reoptimlzation techniques for use in low-thrust guidance.

2) An extension of this study should be made to trajectories which

contain coast arcs.

In addition, trajectories for which reoptimization is not feasible

are of interest. An example of this would be the reentry problem. }



A['I'ENDIX A



o',
J,

Mission dur,ltlon 196.76'/]47f,%day:;

The spacecraft leaves thn vlcinity of the Earth with position and

velocity equal to that of Earth. The mission is carried out undez, the in-

fluence of the inverse gravJtational force of the Sun. After o 19_,-doy he/io-
r

!

centric transfer, the spacecraft matches position and velocity with Mars.

!
i

o
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APPENDIX B

THE DIFFERENTIAL EQUATIONS OF MOT_0N AND

EULER-LAGRANGE DIFFERENTIAL EQUATIONS

• _x4 T

• xi = - r---f- + _ cos ui cos u2

_x5 T

x2 = - r-_j--+ _ cos u I sin u2

_x6 T

x3 - r--f-+ _ sin u1

x4 = xl



4f

34

zI = -1.4835073×10-2 °

z2 = 9.271aSO8x10-3

z3 = 0.0

z_ = 5.199345x10 -I

, z 5 = 8.3463802x10-1
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